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Universality and corrections to scaling in the ballistic deposition model
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In order to analyze some controversies on the equivalence between ballistic deg@ftjand the Kardar-
Parisi-ZhangKPZ) theory, we simulated the BD model in one and two dimensions. Effective expo@gnts
were obtained in the growth regions, which were rigorously determined for various lehgthffective
exponentsa; were obtained from saturation widths in the steady-state regimed=Ih we found3, =g
+AL™™ anda, =a+BL™2, with asymptotic exponents consistent with the KPZ valdesl/3 anda=1/2,
and correction-to-scaling exponents 82=<0.4 and 0.6 A=<0.8. These strong finite-size corrections explain
the previous discrepancies between numerical estimates for BD and the exact KPZ resl#® e could
only obtain reliable estimates ef, , which are consistent with KPZ values if finite-size corrections viith
~0.4 are considered.
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. INTRODUCTION W,.(L)=W(L,t—00)~L?, 4

Ballistic deposition(BD) is one of the most interesting On the other hand, at early times finite-size effects are weak,

growth models for its large number of applicatidsse, e.g., and the interface width increases as
Ref. [1] or recent paperf2—4]). In the simplest version of W~th, =z 5)
the model, at each unit of time a particle is released from a ' a

randomly chosen position abovededimensional substrate,  |n order to present a hydrodynamic description of kinetic

follows a trajectory perpendicular to the surface, and sticksuyrface roughening, Kardar, Parisi, and Zh&fpproposed

upon first contact with a nearest neighbor occupied[Sis].  the Langevin-type equation

The resulting aggregate is porous, and has a rough surface o N

which exhibits dynamic scaling behavior. Despite the inten- dJ ~

sive study of thi;/ model and itgs generalizationg, the numeri- gt vVh+ E(Vh)2+ 7(x.0), 6)

cal values of critical exponents reported in several works are ) ) ) N

controversial, and the equivalence to the Kardar-Pansi-Zhangown as the KPZ equation. Hereis the height at position

(KPZ) universality class is not clear. X at timet, v represents a surface tensionyepresents the
When one studies surface properties, the main quantity dfexcess velocity,” andn is a Gaussian noisgl,7]. The

interest is the interface width of the deposit. In a surface okolutions of the KPZ equation satisfy the scaling relation

lengthL (LY columng at timet, it is usually defined as [Eq. (3)]. Ind=1 the exact valueg=1/3 anda=1/2 were
o obtained[7]. In d=2, numerical works gavg~0.24 and
1 = ~0.39[8,9], and a recent analytical work ted th
_ T2 a~0. 9], ytical work suggested the
W(L't)_< FE. (hi=h) > D exact valuex=0.4[10].

Many discrete growth models are expected to be in the
Hereh; is the height of column, the bar oveih denotes a KPZ universality class. This conjecture was confirmed nu-

spatial average, and the brackets denote a configurationglerically with a high accuracy for various models, including
average, i.e., an average over many realizations of the nois#1€ restricted solid-on-solit(RSOS model of Kim and Ko-
Alternatively, the interface width is defined by some authorssterlitz [11] and some of its generalizations. The same is

as expected for BD. Indeed, a connection between BD and the
KPZ equation was recently derived with analytical methods
1 —_\]¥ [12].
&L= <F{ EI (hi— h)2>} . ) However, most numerical works on BD @+ 1 give es-
timates of exponeng smaller than the KPZ value,13—-18:
AlthoughW and ¢ have different values, they obey the samethe reported estimates range frggr-0.30 to 0.331(central
dynamic scaling relation estimates, not including error bar#loreover, to our knowl-
edge all previous estimates of exponantire smaller than
W= Lf(tL~?). (3) the KPZ value[6,13-15,1T: they range froma=0.42 to

0.47, and the error bars do not include=0.5. A summary
Then, in the rest of this paper, any definition or discussiorof numerical data for the BD model is given in R¢L5].
concerningW is also valid for¢, except when the opposite is Although the quality of the random number generators may
explicitly mentioned. The exponeni in Eq. (3) describes have been responsible for some deviations in previous
the long-time behavior of the problem, when the interfaceworks, as discussed by D’Souraal. [17] the careful nu-
width saturates at merical simulations of those authors gave-0.45 ind=1,
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which is still 10% smaller than the KPZ value. th=2 the I I I R IR I
situation is more difficult, because there is no exact calcula- W -
tion of critical exponents for both the KPZ equation and BD.

This scenario suggests that further numerical investiga-
tions are necessary to clarify the question of the universality 10
class of BD, particularly id=1. In this work, we present a
systematic numerical study of BD that confirms that this
model is in the KPZ universality class @h=1, and suggests
the same fod=2. Simulations will be performed on lattices
with L=64-L =16 384 ind=1, and lattices witl.=16-L
=1024 ind=2. Combinations of simple random number
generators will be used, but no bias associated with them is

4096
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128

1 Dol cond comd voomd ol 3ol |
102 10! 102 108 104 105 108

observed. Finite-size estimates of expongneffective ex- t
ponentsB,) will be obtained in the growth region, and . . . o
finite-size estimates of exponeat (effective exponents, ) FIG. 1. Interface widthV [Eq. (1)] of one-dimensional ballistic

will be obtained from the saturation width4/..(L). In d  deposits as a function of timtefor various lengthd..
=1, extrapolations of the effective exponentsLte:~ will
provide asymptotic estimates gfand«, in good agreement 7 (in t,=50 the average height of the porous depositjs
with the KPZ values, and will suggest the presence of strong=100). If 7 is small,r is very near 1, indicating that the data
corrections to scaling. Thus this work is important not onlylie in an almost perfect straight line. For large(7>t.), r
for confirming the universality class of BD but also for esti- typically decreases withr, because the lggW-vs-logqt
mating finite-size corrections to Eqeh and (5). In d=2,  curve acquires a downward curvatifég. 1). Then, the con-
less accurate results far_ will be obtained but, including dition r=r ,;, is suitable to determine the end of the growth
such corrections, they are also consistent with numerical esegion (r= r,,,) if 'min iS high enough to ensure that all
timates for the KPZ universality class. data inty<t< 7y, lie approximately in a straight line. In
The rest of this paper is organized as follows. In Sec Il weprder to choose a reliable value of;,, we analyzed three
present the simulation results fdr=1, the methods to cal- candidatesr ,,;,=0.999 95, 0.9999, and 0.999. In Fig. 2 this
culate effective exponents, and the asymptotic estimatgs of procedure is illustrated fok =2048: visual inspection sug-
and a. In Sec. Il we present the simulations’ results tbr  gests linear behavior of Igg/V-vs-log,¢t in the regions with
=2, and obtain estimates of exponentin Sec. IV we sum- ¢ .. =0.99995 andr,;,=0.9999, while deviations appear

marize our results and present our conclusions. for rpmin=0.999. The same behavior is observed for other
lengthsL.
II. BALLISTIC DEPOSITION IN ONE-DIMENSIONAL Effective exponent@, were calculated from least squares
SUBSTRATES fits of log;gW-vs-log,ot plots using all data in the growth

) o o . . regions (p=<t<r7,,, (see Fig. 2 The results obtained from
We simulated ballistic deposition in one-dimensional SUb'plots of W and & and using the above values of,;, are
strates of lengthd =2", with integer 6sn<14 (64<L  ghown in Table I. Note that,,;,=0.999 95 and 0.9999 pro-

with 10* different deposits were generated, and very long

steady-state region®f interface width saturationvere ob-
served. For each length=2048, one set with H0different
deposits was generated, but long steady-state regions were
obtained only forL=2048 and 4096W and ¢ data were
typically stored after deposition af particles.

The interface widthW as a function of timé (number of
deposited particles per lattice colujnfor several lengthg,
is shown in Fig. 1. For very short timdsypically t<10),
there is a transient region where the initial deposit is formed.
In this region,W rapidly increases. After this transient, the
growth region begin$Eqg. (5)]; then a crossover region is NPT R ETI R
observed, and finally the interface width saturates at the 10! 102 103 104
steady-state regiofEqg. (4)]. t

The first step of our analysis is to propose a precise defi-
nition of the growth region. Figure 1 suggests that the linear g 2. The solid line shows the interface wid#[Eq. (1)] of
regions of logoW-vs-log,¢t plots have increasing declivities one-dimensional ballistic deposits as a function of timeor L
for increasingL, which indicates the presence of finite-size = 2048. Dashed, dotted, and dash-dotted lines have the declivities
corrections to Eq(5). Then, for fixedL, we calculated the of the linear fits of the regions involved, startingtgt=50. Those
linear correlation coefficients of log;gW-vs-log;¢t plots us-  declivities are estimates ¢, . The linear correlation coefficiemt
ing data in intervaldp<t=< 7, with fixedt;=50 and varying of the data inside each region is also shown.
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TABLE |. Effective exponents3, in d=1, obtained from log-log plots of the quantiti®g and ¢ and
using three values of linear correlation coefficients, to determine the growth region.

L I min= 0.999 0.9999 0.999 95 0.999 0.9999 0.999 95
Quantity: W wW w & & &
256 0.2312 0.2530 0.2545 0.2388 0.2594 0.2615
512 0.2484 0.2641 0.2669 0.2541 0.2678 0.2706
1024 0.2620 0.2758 0.2778 0.2672 0.2793 0.2813
2048 0.2757 0.2869 0.2882 0.2800 0.2911 0.2924
4096 0.2837 0.2961 0.2974 0.2877 0.3001 0.3013
8192 0.2932 0.3033 0.3049 0.2967 0.3056 0.3076
16 384 0.3077 0.3099 0.3121 0.3118 0.3119 0.3139

choicer ,ij,=0.9999, which will be used in the rest of this numerical accuracy. Moreover, our analysis shows correc-
paper to determine the growth regions and to estingate tions to scaling in the form of Eq7) with 0.2<\=<0.4 (Fig.

Following the above criteria, well defined growth regions4 strongly suggests speculating that 1/3).
were observed only in lattices with=256. It is also rel- Now we turn to a calculation of exponent. In the
evant to mention that we calculatg in the two indepen- steady-state region, the distributions of interface widths are
dent sets of data fot <1024 and obtained the same esti- very large[17]. Then we had to compute averages over many
mates up to three decimal places. different deposits and many different times to obtain esti-

Different values ofB, are obtained from\W and ¢ (see  mates ofW,.(L) and&..(L) with an accuracy near 0.2%. It
Table ). However,3, has a much more remarkable variation was also necessary to compute those quantities over different
with L, particularly for the shortest lengths. It proves thatranges ot to ensure that they are fluctuating around average
careful extrapolations of these effective exponents are necegalues and not increasing systematically withthe latter
sary to calculate the asymptoittc Then we propose a simple possibility would suggest that the steady-state region was not
scaling form forg, , yet attained. Consequently, saturation widths were estimated

only for L=<4096 (at this point it is important to recall that
BL~B+AL™™, (7)  the length of the steady-state region is not properly appreci-
ated in logoW-vs-logqt plots; that is the case fdr=2048
where the exponent is related to corrections to scaling in andL =4096 in Fig. ). Our estimates of..(L) and £..(L)
Eq. (5), andA is constant. are shown in Table II.

In Fig. 3(a) we showp, vsL ™1, with B, obtained from We calculated effective exponenis defined as
W and\ ;= 0.28. This value ol provides the best linear fit
of the last five pointglargerL), and the asymptotic estimate
is 8=0.339. In Fig. 80) we show B, vs L™ *2 for X\, aLzln[Ww(L)/W“(L/Z)] (8)
=0.39, with3_ obtained fromé. The same criteria was used In2
to choose this value ok,, and the estimatg8=0.328 is
obtained.

Slightly different values of exponent\ provide
asymptotic estimates exactly equal to the KPZ valBie
=1/3: A\1=0.32(W) and \,=0.33 (£). The corresponding
BL-vs-L " plots are shown together in Fig. 4. The linear fits

(analogously fog). a, also has a remarkable dependence on
L; then a systematic extrapolation of these effective expo-
nents is also necessary. We propose the scaling form

. . . . . . O¢35 T T T T T T T T
in Fig. 4 are also reliable, indicating that the expongrf L ! i
BD is the same of the KPZ universality class within good i
By -
0.35 rrr 0.35 T .
. F 0.3 -
BL 03| BL 03 [ i
0.25 0.26
Fy i1 d F 1] ]

%2001 o2 02y 0.1 0.25
LM L2 0 0.1 0.2

[,=A
(a) (b) _ | |
FIG. 4. Effective exponentg, in d=1, obtained from plots of
FIG. 3. Effective exponentg, in d=1, obtained from log-log W (squaresand¢ (triangleg, with A =0.32 forW and\ =0.33 for

plots of (a) W (A;=0.28) and(b) ¢ (A,=0.39). Straight lines are ¢. Straight lines are least squares fits of the last five points of each
least squares fits of the last five points of each set of data. set of data.

056116-3



F. D. A. AARAO RIES

TABLE Il. Estimates of interface width®V..(L) and &..(L) of
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one-dimensional ballistic deposits in the steady-state regier-
face width saturation
L W.(L) &.(L)
32 3.3992-0.0069 3.534€:0.0074
64 4.4132£0.0077 4.567%0.0087
128 5.8317-0.0108 6.03840.0119
256 7859200146 8153&00167 1 ERTTT ERRTTT IRt T
512 10.7732-0.0236 11.198%0.0247 10° 10! 102 103 104
1024 14.94780.0282 15.5661 0.0298 t
2048 20.93060.0320 21.81390.0328
4096 29.41480.0610 30.68120.0700 FIG. 6. Interface widthV [Eq. (1)] of two-dimensional ballistic
deposits as a function of tintefor L=512.
a ~a+BL74, C)

tems because we could not define the growth regions, even in
large lattices. In Fig. 6 we show lggyV vs logqt for L
=512. There is a transient region urtit 10, similar to the
cased=1, in which W rapidly increases. From—10 tot
obtained fromW..(L). In Fig. 5b) we showa, vsL 22 for ~ ~100, the average declivity in Fig. 6 decreases. However,
A,=0.62, withe, obtained fromg..(L). Those values oh, that declivity increases again from~ 100 tot~1000, an_d

and A, provide the best linear fits of the last five points (Nen the crossover region begins. Consequently we did not
(largerL). The asymptotic estimates obtained from the linea®bt@in high linear correlation coefficients% 0.9999) in any

fits in Figs. §a) and 3b) are «=0.507 (W) and &= 0.506 significantly large range of, which would be essential to
(&), both very near the KPZ value=0.5. calculatep, . _

The exact KPZ value is obtained if slightly different ~ On the other hand, we were able to estimate[Eq. (8)]
correction-to-scaling exponents are used to extrapolate tHéS'nqghe same methods of Sec. Il. In Figa)Ave showa,
data:A,=0.72 forW and A,=0.75 for &. The @ -vsL 2  VSL 7% with obta|ngg fromW..(L) and A,=0.49. In
plots have no remarkable difference from those in Figa) 5 Fig: 7b we showa vsL™ %2, with o obtained fromé..(L)
and §b), similarly to the previous analysis of expongst ~ @ndA,=0.51. These values df, andA, provide the best
Then our results show that exponentfor BD is also con- linear fits of the last four pointargerL). The dependence

sistent with the KPZ value, and suggests corrections to scaRf @ onL is much more impressive than éh=1, and much
ing [Eq. (9)] with 0.6<=A=<0.8. smaller lengthsL were considered. Consequently, the

asymptotic estimates af are much less accurate. From the
linear fits in Figs. 7a) and 1b), we obtaina=0.366 and
0.363, respectively.

These estimates are smaller than the recent estimates for
We simulated ballistic deposition in two-dimensional the KPZ universality classg=0.393[18] (numerica) and
square substrates & L), with lengthsL=2", for an integer «=0.4[10] (analytica). However, with suitable choices of

4<n=<10 (16sL=<1024). For eacH <256, two indepen- correction to scaling exponenta {=0.38 andA,=0.37),

dent sets with 1bdifferent deposits were generated. For the suggested exact valae=0.4[10] is obtained, as shown

=512, 4x10° different deposits were generated and, lfor in Fig. 8. Thus our results for BD are also consistent with

=1024, 100 different deposits were generated. KPZ in d=2, with correction-to-scaling exponents~0.4.
We did not estimate effective exponerls in these sys-

whereA is another correction-to-scaling exponent, &id a
constant.
In Fig. 5@ we showa, vs L1 for A;=0.58, witha,

IIl. BALLISTIC DEPOSITION IN TWO-DIMENSIONAL
SUBSTRATES

0.4 0.4
0.56 Frrrr T 0.56 o0 o, 03
E E L 0.3 L 03
0. 0.5 3 3
o 95E o, RE 0.25 025 E
0.45 E 045 E 02k 0.2
0.4 0.4 oblf; E E 061? FNPR A
3 F "0 0.060.10.1560.2 "0 0.050.10.150.2
0.35 0.35
L_Al L_Ae
(a) (b)

FIG. 7. Effective exponenta, in d=2, obtained from plots of
FIG. 5. Effective exponenta, in d=1, obtained from plots of (&) W (A;=0.49) and(b) ¢ (A,=0.51). Straight lines are least
(& W (A;=0.58) and(b) ¢ (A,=0.62). Straight lines are least squares fits of the last four points of each set of data. Error bars are
squares fits of the last five points of each set of data. smaller than the size of the symbols, except when indicated.
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PTG Indeed, our estimates g8, have small differences when

different linear correlation coefficients,;, are used to de-
termine the end of the growth regidsee the results in Table
I for rp,in=0.9999 and 0.99995). Also note that our esti-
mates are consistent with previous works. For instance, in
d=1, Family and Viczek[6] obtained 3=0.30+0.02 for
L =2000(to be compared witlB,y4gin Table ) and Halpin-
Healy and Zhangj16] obtainedB=0.31 forL = 10 000(to be
0.1 Bl NG compared withBg;9, and B1g3g4in Table ). _
0 0.1 0.2 0.3 However, exponentg, are not the asymptotic ones, but
[,-4 they are finite-size estimates that must be systematically ex-
trapolated. The absence of those extrapolations is certainly
FIG. 8. Effective exponents, in d=2, obtained from plots of the most important reason for the discrepancies discussed
W (squaresand & (triangles, with A=0.38 forw and\=0.37 for ~ above, particularly when small lattices were considered. Our
£. Straight lines are least squares fits of the last four points of eackxtrapolationgFigs. 3 and # suggest that we should work
set of data. Error bars are smaller than the size of the symbolsyith very large latticesl(>10° in d=1) to find 8, near the
except when indicated. asymptotic value, using the same definition for the growth
region.
Finally, it is important to recall that the plots in Figs. 7and 8  QOur values ofa, are also consistent with previous works
suggestr>0.35, while previous numerical estimates for bal-in d=1. For example, Family and Viczd®] obtaineda

0.2

B
&

listic deposition[6,13,19 were smaller than this value. =0.42+0.03, collapsing data fronL=50 to 500, while
our data for 64&L<512 give 0.46<«, <0.46 [Figs. 5a)
IV. DISCUSSION AND CONCLUSION and Hb)]. Meakin etal. [13] obtained a=0.47 from

logioW..(L)-vsdog,oL plots using 16:L <2048, the same

We §imulated BD id=1 and 2 and .cz_ilcullated th_e inter- value of OUrayqys (UsingL =512 andL = 1024). D'Souza et
face widthsw and ¢ [Eqgs. (1) and(2)]. Finite-size estimates 5 117] ghtainede=0.45 from the steady-state distribution

of exponentB were obtained after the precise definition of P(£) for L=127, while we obtainedr;,s~0.43 (using L
the growth regions in logW-vs-log,¢t (or log;é-vs-log;qt) =64 and 128) andu,se~0.46 (using L=128 and 256).

plots. Finite-size estimates of the exponanwere calculated Again we consider that the origin of discrepancies from the

using the saturation widths. k=1, the effective exponents pz e is associated with the absence of extrapolations of
were extrapolated and gave asymptotic estimatgg@fida gtfactive exponents. Since it is very difficult to attain the

consistent with the KPZ universality class. Those extrapolageaqy-state regimes in very large lattices, the calculation of
tions suggested strong corrections to scaling in this problem, is restricted to relatively small and one necessarily has to

In d=2, we could only estimate effective exponeaswith oo with strong finite-size effects.

accuracy. The extrapolatgd is also consistent with recent Finally, we expect that this work will motivate further
results for the KPZ equation, and for other models that argyqies to explain the corrections to scaling obtained in
expected to be in the same universality class. Strong correc- 1, and we suggest the application of the same methods to

tions to scaling are also presentdr=2. _ . analyze related models, particularlydr= 2, where interest-
Now it is essential to discuss the origin of dlscrepanmesmg applications frequently appear.

between previous estimates @fand 8 for BD and the KPZ

class. Exponeng is usually calculated in very large systems,

where loggW-vs-log¢t plots show linear behavior in large ACKNOWLEDGMENTS
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it does not seem that this is the origin of the discrepanciegBrazilian agencigs
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