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Universality and corrections to scaling in the ballistic deposition model
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~Received 17 January 2001; published 20 April 2001!

In order to analyze some controversies on the equivalence between ballistic deposition~BD! and the Kardar-
Parisi-Zhang~KPZ! theory, we simulated the BD model in one and two dimensions. Effective exponentsbL

were obtained in the growth regions, which were rigorously determined for various lengthsL. Effective
exponentsaL were obtained from saturation widths in the steady-state regimes. Ind51 we foundbL5b
1AL2l andaL5a1BL2D, with asymptotic exponents consistent with the KPZ valuesb51/3 anda51/2,
and correction-to-scaling exponents 0.2&l&0.4 and 0.6&D&0.8. These strong finite-size corrections explain
the previous discrepancies between numerical estimates for BD and the exact KPZ results. Ind52 we could
only obtain reliable estimates ofaL , which are consistent with KPZ values if finite-size corrections withD
'0.4 are considered.
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I. INTRODUCTION

Ballistic deposition~BD! is one of the most interestin
growth models for its large number of applications~see, e.g.,
Ref. @1# or recent papers@2–4#!. In the simplest version o
the model, at each unit of time a particle is released from
randomly chosen position above ad-dimensional substrate
follows a trajectory perpendicular to the surface, and sti
upon first contact with a nearest neighbor occupied site@5,6#.
The resulting aggregate is porous, and has a rough sur
which exhibits dynamic scaling behavior. Despite the inte
sive study of this model and its generalizations, the num
cal values of critical exponents reported in several works
controversial, and the equivalence to the Kardar-Pansi-Zh
~KPZ! universality class is not clear.

When one studies surface properties, the main quantit
interest is the interface width of the deposit. In a surface
lengthL (Ld columns! at time t, it is usually defined as

W~L,t !5K F 1

Ld (
i

~hi2h̄!2G1/2L . ~1!

Herehi is the height of columni, the bar overh̄ denotes a
spatial average, and the brackets denote a configurati
average, i.e., an average over many realizations of the n
Alternatively, the interface width is defined by some auth
as

j~L,t !5F K 1

Ld (
i

~hi2h̄!2L G1/2

. ~2!

AlthoughW andj have different values, they obey the sam
dynamic scaling relation

W'La f ~ tL2z!. ~3!

Then, in the rest of this paper, any definition or discuss
concerningW is also valid forj, except when the opposite i
explicitly mentioned. The exponenta in Eq. ~3! describes
the long-time behavior of the problem, when the interfa
width saturates at
1063-651X/2001/63~5!/056116~6!/$20.00 63 0561
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W`~L ![W~L,t→`!;La. ~4!

On the other hand, at early times finite-size effects are we
and the interface width increases as

W;tb, b5z/a. ~5!

In order to present a hydrodynamic description of kine
surface roughening, Kardar, Parisi, and Zhang@7# proposed
the Langevin-type equation

]h

]t
5n¹2h1

l

2
~¹h!21h~xW ,t !, ~6!

known as the KPZ equation. Hereh is the height at position
xW at time t, n represents a surface tension,l represents the
‘‘excess velocity,’’ andh is a Gaussian noise@1,7#. The
solutions of the KPZ equation satisfy the scaling relati
@Eq. ~3!#. In d51 the exact valuesb51/3 anda51/2 were
obtained@7#. In d52, numerical works gaveb'0.24 and
a'0.39 @8,9#, and a recent analytical work suggested t
exact valuea50.4 @10#.

Many discrete growth models are expected to be in
KPZ universality class. This conjecture was confirmed n
merically with a high accuracy for various models, includin
the restricted solid-on-solid~RSOS! model of Kim and Ko-
sterlitz @11# and some of its generalizations. The same
expected for BD. Indeed, a connection between BD and
KPZ equation was recently derived with analytical metho
@12#.

However, most numerical works on BD ind51 give es-
timates of exponentb smaller than the KPZ value@6,13–16#:
the reported estimates range fromb50.30 to 0.331~central
estimates, not including error bars!. Moreover, to our knowl-
edge all previous estimates of exponenta are smaller than
the KPZ value@6,13–15,17#: they range froma50.42 to
0.47, and the error bars do not includea50.5. A summary
of numerical data for the BD model is given in Ref.@15#.
Although the quality of the random number generators m
have been responsible for some deviations in previ
works, as discussed by D’Souzaet al. @17# the careful nu-
merical simulations of those authors gavea50.45 in d51,
©2001 The American Physical Society16-1
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which is still 10% smaller than the KPZ value. Ind52 the
situation is more difficult, because there is no exact calcu
tion of critical exponents for both the KPZ equation and B

This scenario suggests that further numerical invest
tions are necessary to clarify the question of the universa
class of BD, particularly ind51. In this work, we present a
systematic numerical study of BD that confirms that t
model is in the KPZ universality class ind51, and suggests
the same ford52. Simulations will be performed on lattice
with L564–L516 384 ind51, and lattices withL516–L
51024 in d52. Combinations of simple random numb
generators will be used, but no bias associated with them
observed. Finite-size estimates of exponentb ~effective ex-
ponentsbL) will be obtained in the growth region, an
finite-size estimates of exponenta ~effective exponentsaL)
will be obtained from the saturation widthsW`(L). In d
51, extrapolations of the effective exponents toL→` will
provide asymptotic estimates ofb anda, in good agreemen
with the KPZ values, and will suggest the presence of str
corrections to scaling. Thus this work is important not on
for confirming the universality class of BD but also for es
mating finite-size corrections to Eqs.~4! and ~5!. In d52,
less accurate results foraL will be obtained but, including
such corrections, they are also consistent with numerica
timates for the KPZ universality class.

The rest of this paper is organized as follows. In Sec II
present the simulation results ford51, the methods to cal
culate effective exponents, and the asymptotic estimatesb
and a. In Sec. III we present the simulations’ results ford
52, and obtain estimates of exponenta. In Sec. IV we sum-
marize our results and present our conclusions.

II. BALLISTIC DEPOSITION IN ONE-DIMENSIONAL
SUBSTRATES

We simulated ballistic deposition in one-dimensional su
strates of lengthsL52n, with integer 6<n<14 (64<L
<16 384). For each lengthL<1024, two independent set
with 104 different deposits were generated, and very lo
steady-state regions~of interface width saturation! were ob-
served. For each lengthL>2048, one set with 104 different
deposits was generated, but long steady-state regions
obtained only forL52048 and 4096.W and j data were
typically stored after deposition ofL particles.

The interface widthW as a function of timet ~number of
deposited particles per lattice column!, for several lengthsL,
is shown in Fig. 1. For very short times~typically t&10),
there is a transient region where the initial deposit is form
In this region,W rapidly increases. After this transient, th
growth region begins@Eq. ~5!#; then a crossover region i
observed, and finally the interface width saturates at
steady-state region@Eq. ~4!#.

The first step of our analysis is to propose a precise d
nition of the growth region. Figure 1 suggests that the lin
regions of log10W-vs-log10t plots have increasing declivitie
for increasingL, which indicates the presence of finite-si
corrections to Eq.~5!. Then, for fixedL, we calculated the
linear correlation coefficientsr of log10W-vs-log10t plots us-
ing data in intervalst0<t<t, with fixed t0550 and varying
05611
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t ~in t0550 the average height of the porous deposit ish0
'100). If t is small,r is very near 1, indicating that the dat
lie in an almost perfect straight line. For larget (t@t0), r
typically decreases witht, because the log10W-vs-log10t
curve acquires a downward curvature~Fig. 1!. Then, the con-
dition r 5r min is suitable to determine the end of the grow
region (t5tmax) if r min is high enough to ensure that a
data in t0<t<tmax lie approximately in a straight line. In
order to choose a reliable value ofr min , we analyzed three
candidates:r min50.999 95, 0.9999, and 0.999. In Fig. 2 th
procedure is illustrated forL52048: visual inspection sug
gests linear behavior of log10W-vs-log10t in the regions with
r min50.999 95 andr min50.9999, while deviations appea
for r min50.999. The same behavior is observed for oth
lengthsL.

Effective exponentsbL were calculated from least square
fits of log10W-vs-log10t plots using all data in the growth
regions (t0<t<tmax) ~see Fig. 2!. The results obtained from
plots of W and j and using the above values ofr min are
shown in Table I. Note thatr min50.999 95 and 0.9999 pro
vide nearly the samebL . This analysis justify our final

FIG. 1. Interface widthW @Eq. ~1!# of one-dimensional ballistic
deposits as a function of timet for various lengthsL.

FIG. 2. The solid line shows the interface widthW @Eq. ~1!# of
one-dimensional ballistic deposits as a function of timet for L
52048. Dashed, dotted, and dash-dotted lines have the decliv
of the linear fits of the regions involved, starting att0550. Those
declivities are estimates ofbL . The linear correlation coefficientr
of the data inside each region is also shown.
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TABLE I. Effective exponentsbL in d51, obtained from log-log plots of the quantitiesW and j and
using three values of linear correlation coefficientsr min to determine the growth region.

L r min5 0.999 0.9999 0.999 95 0.999 0.9999 0.999 95
Quantity: W W W j j j

256 0.2312 0.2530 0.2545 0.2388 0.2594 0.2615
512 0.2484 0.2641 0.2669 0.2541 0.2678 0.2706
1024 0.2620 0.2758 0.2778 0.2672 0.2793 0.2813
2048 0.2757 0.2869 0.2882 0.2800 0.2911 0.2924
4096 0.2837 0.2961 0.2974 0.2877 0.3001 0.3013
8192 0.2932 0.3033 0.3049 0.2967 0.3056 0.3076
16 384 0.3077 0.3099 0.3121 0.3118 0.3119 0.3139
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choice r min50.9999, which will be used in the rest of th
paper to determine the growth regions and to estimatebL .

Following the above criteria, well defined growth regio
were observed only in lattices withL>256. It is also rel-
evant to mention that we calculatedbL in the two indepen-
dent sets of data forL<1024 and obtained the same es
mates up to three decimal places.

Different values ofbL are obtained fromW and j ~see
Table I!. However,bL has a much more remarkable variatio
with L, particularly for the shortest lengths. It proves th
careful extrapolations of these effective exponents are ne
sary to calculate the asymptoticb. Then we propose a simpl
scaling form forbL ,

bL'b1AL2l, ~7!

where the exponentl is related to corrections to scaling i
Eq. ~5!, andA is constant.

In Fig. 3~a! we showbL vs L2l1, with bL obtained from
W andl150.28. This value ofl1 provides the best linear fi
of the last five points~largerL), and the asymptotic estimat
is b50.339. In Fig. 3~b! we show bL vs L2l2 for l2
50.39, withbL obtained fromj. The same criteria was use
to choose this value ofl2, and the estimateb50.328 is
obtained.

Slightly different values of exponentl provide
asymptotic estimates exactly equal to the KPZ valueb
51/3: l150.32 ~W! and l250.33 (j). The corresponding
bL-vs-L2l plots are shown together in Fig. 4. The linear fi
in Fig. 4 are also reliable, indicating that the exponentb of
BD is the same of the KPZ universality class within go

FIG. 3. Effective exponentsbL in d51, obtained from log-log
plots of ~a! W (l150.28) and~b! j (l250.39). Straight lines are
least squares fits of the last five points of each set of data.
05611
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numerical accuracy. Moreover, our analysis shows corr
tions to scaling in the form of Eq.~7! with 0.2&l&0.4 ~Fig.
4 strongly suggests speculating thatl51/3).

Now we turn to a calculation of exponenta. In the
steady-state region, the distributions of interface widths
very large@17#. Then we had to compute averages over ma
different deposits and many different times to obtain e
mates ofW`(L) andj`(L) with an accuracy near 0.2%. I
was also necessary to compute those quantities over diffe
ranges oft to ensure that they are fluctuating around avera
values and not increasing systematically witht; the latter
possibility would suggest that the steady-state region was
yet attained. Consequently, saturation widths were estim
only for L<4096 ~at this point it is important to recall tha
the length of the steady-state region is not properly appr
ated in log10W-vs-log10t plots; that is the case forL52048
andL54096 in Fig. 1!. Our estimates ofW`(L) andj`(L)
are shown in Table II.

We calculated effective exponentsaL defined as

aL5
ln@W`~L !/W`~L/2!#

ln 2
~8!

~analogously forj). aL also has a remarkable dependence
L; then a systematic extrapolation of these effective ex
nents is also necessary. We propose the scaling form

FIG. 4. Effective exponentsbL in d51, obtained from plots of
W ~squares! andj ~triangles!, with l50.32 forW andl50.33 for
j. Straight lines are least squares fits of the last five points of e
set of data.
6-3
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aL'a1BL2D, ~9!

whereD is another correction-to-scaling exponent, andB is a
constant.

In Fig. 5~a! we showaL vs L2D1 for D150.58, withaL
obtained fromW`(L). In Fig. 5~b! we showaL vs L2D2 for
D250.62, withaL obtained fromj`(L). Those values ofD1
and D2 provide the best linear fits of the last five poin
~largerL). The asymptotic estimates obtained from the line
fits in Figs. 5~a! and 5~b! are a50.507 ~W! and a50.506
(j), both very near the KPZ valuea50.5.

The exact KPZ value is obtained if slightly differen
correction-to-scaling exponents are used to extrapolate
data:D150.72 for W and D250.75 for j. The aL-vs-L2D

plots have no remarkable difference from those in Figs. 5~a!
and 5~b!, similarly to the previous analysis of exponentb.
Then our results show that exponenta for BD is also con-
sistent with the KPZ value, and suggests corrections to s
ing @Eq. ~9!# with 0.6&D&0.8.

III. BALLISTIC DEPOSITION IN TWO-DIMENSIONAL
SUBSTRATES

We simulated ballistic deposition in two-dimension
square substrates (L3L), with lengthsL52n, for an integer
4<n<10 (16<L<1024). For eachL<256, two indepen-
dent sets with 104 different deposits were generated. ForL
5512, 43103 different deposits were generated and, forL
51024, 100 different deposits were generated.

We did not estimate effective exponentsbL in these sys-

TABLE II. Estimates of interface widthsW`(L) andj`(L) of
one-dimensional ballistic deposits in the steady-state region~inter-
face width saturation!.

L W`(L) j`(L)

32 3.399260.0069 3.534060.0074
64 4.413260.0077 4.567960.0087
128 5.831760.0108 6.038460.0119
256 7.859260.0146 8.153360.0167
512 10.773260.0236 11.198960.0247
1024 14.947060.0282 15.566160.0298
2048 20.930660.0320 21.813960.0328
4096 29.414060.0610 30.681960.0700

FIG. 5. Effective exponentsaL in d51, obtained from plots of
~a! W (D150.58) and~b! j (D250.62). Straight lines are leas
squares fits of the last five points of each set of data.
05611
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tems because we could not define the growth regions, eve
large lattices. In Fig. 6 we show log10W vs log10t for L
5512. There is a transient region untilt;10, similar to the
cased51, in which W rapidly increases. Fromt;10 to t
;100, the average declivity in Fig. 6 decreases. Howev
that declivity increases again fromt;100 to t;1000, and
then the crossover region begins. Consequently we did
obtain high linear correlation coefficients (r>0.9999) in any
significantly large range oft, which would be essential to
calculatebL .

On the other hand, we were able to estimateaL @Eq. ~8!#
using the same methods of Sec. II. In Fig. 7~a! we showaL
vs L2D1, with aL obtained fromW`(L) and D150.49. In
Fig. 7b we showaL vs L2D2, with aL obtained fromj`(L)
and D250.51. These values ofD1 and D2 provide the best
linear fits of the last four points~largerL). The dependence
of aL on L is much more impressive than ind51, and much
smaller lengths L were considered. Consequently, th
asymptotic estimates ofa are much less accurate. From th
linear fits in Figs. 7~a! and 7~b!, we obtaina50.366 and
0.363, respectively.

These estimates are smaller than the recent estimate
the KPZ universality class,a50.393 @18# ~numerical! and
a50.4 @10# ~analytical!. However, with suitable choices o
correction to scaling exponents (D150.38 andD250.37),
the suggested exact valuea50.4 @10# is obtained, as shown
in Fig. 8. Thus our results for BD are also consistent w
KPZ in d52, with correction-to-scaling exponentsD;0.4.

FIG. 6. Interface widthW @Eq. ~1!# of two-dimensional ballistic
deposits as a function of timet for L5512.

FIG. 7. Effective exponentsaL in d52, obtained from plots of
~a! W (D150.49) and~b! j (D250.51). Straight lines are leas
squares fits of the last four points of each set of data. Error bars
smaller than the size of the symbols, except when indicated.
6-4
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Finally, it is important to recall that the plots in Figs. 7 and
suggesta.0.35, while previous numerical estimates for b
listic deposition@6,13,19# were smaller than this value.

IV. DISCUSSION AND CONCLUSION

We simulated BD ind51 and 2 and calculated the inte
face widthsW andj @Eqs.~1! and~2!#. Finite-size estimates
of exponentb were obtained after the precise definition
the growth regions in log10W-vs-log10t ~or log10j-vs-log10t)
plots. Finite-size estimates of the exponenta were calculated
using the saturation widths. Ind51, the effective exponent
were extrapolated and gave asymptotic estimates ofb anda
consistent with the KPZ universality class. Those extrapo
tions suggested strong corrections to scaling in this probl
In d52, we could only estimate effective exponentsaL with
accuracy. The extrapolateda is also consistent with recen
results for the KPZ equation, and for other models that
expected to be in the same universality class. Strong cor
tions to scaling are also present ind52.

Now it is essential to discuss the origin of discrepanc
between previous estimates ofa andb for BD and the KPZ
class. Exponentb is usually calculated in very large system
where log10W-vs-log10t plots show linear behavior in larg
intervals of timet @6,13–16#. Although different authors may
consider slightly different definitions for the growth regio
it does not seem that this is the origin of the discrepanc

FIG. 8. Effective exponentsaL in d52, obtained from plots of
W ~squares! andj ~triangles!, with D50.38 forW andl50.37 for
j. Straight lines are least squares fits of the last four points of e
set of data. Error bars are smaller than the size of the symb
except when indicated.
hy

05611
-
.

e
c-

s

,

s.

Indeed, our estimates ofbL have small differences whe
different linear correlation coefficientsr min are used to de-
termine the end of the growth region~see the results in Table
I for r min50.9999 and 0.999 95). Also note that our es
mates are consistent with previous works. For instance
d51, Family and Viczek@6# obtainedb50.3060.02 for
L52000~to be compared withb2048 in Table I! and Halpin-
Healy and Zhang@16# obtainedb50.31 forL510 000~to be
compared withb8192 andb16384 in Table I!.

However, exponentsbL are not the asymptotic ones, bu
they are finite-size estimates that must be systematically
trapolated. The absence of those extrapolations is certa
the most important reason for the discrepancies discus
above, particularly when small lattices were considered. O
extrapolations~Figs. 3 and 4! suggest that we should wor
with very large lattices (L.106 in d51) to findbL near the
asymptotic value, using the same definition for the grow
region.

Our values ofaL are also consistent with previous work
in d51. For example, Family and Viczec@6# obtaineda
50.4260.03, collapsing data fromL550 to 500, while
our data for 64<L<512 give 0.40<aL<0.46 @Figs. 5~a!
and 5~b!#. Meakin et al. @13# obtained a50.47 from
log10W`(L)-vs-log10L plots using 16,L,2048, the same
value of oura1024 ~usingL5512 andL51024). D’Souza et
al @17# obtaineda50.45 from the steady-state distributio
P(j) for L5127, while we obtaineda128'0.43 ~using L
564 and 128) anda256'0.46 ~using L5128 and 256).
Again we consider that the origin of discrepancies from
KPZ value is associated with the absence of extrapolation
effective exponents. Since it is very difficult to attain th
steady-state regimes in very large lattices, the calculation
a is restricted to relatively smallL and one necessarily has t
deal with strong finite-size effects.

Finally, we expect that this work will motivate furthe
studies to explain the corrections to scaling obtained ind
51, and we suggest the application of the same method
analyze related models, particularly ind52, where interest-
ing applications frequently appear.
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